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In certain technical applications when a magnetic field with rotational
symmetry has to be calculated, it is often a principal requirement that
a given line should be a magnetic line of force (or more accurately,
that a given surface of rotation should coincide with a surface of mag-
netic force).

An exact particular solution of the problem is found in the case when
the given line of force is swaight. This solution is subsequently gen-
eralized to the case of an arbitrary smooth line, approximating it by

a broken line. A method is also proposed for producing and calculating
2 magnetic field satisfying the above conditions.

The solution-of this problem may be used in questions of magneto~
hydrodynamics and plasmadynamics as the first approximation for
the magnetic field in the case of small magnetic Reynolds numbers,
when it is required that a certain line of fluid flow should coincide
with a magnetic line of force.

§1. DETERMINATION OF A MAGNETIC FIELD WITH
ROTATIONAL SYMMETRY FROM ITS VALUE AT
THE AXIS [1]

In the case when there are no currents in the med-
ium, or when they are neglected, a static magnetic
field with rotational symmetry is specified by the fol-
lowing formulas in a cylindrical system of coordinates
zZr
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where Hy and Hy arethe component vectors of themag-
netic field strength, H(z) is the value of the field at
the axis, H™(z) is the n-th order derivative.

It is well known that magnetic fields with rotational
symmetry are obtained using circular current con-
ductors.

From the Biot-Savart law the magnetic field of a
coil on the axis of symmetry is

H(2) =

R (1.3)
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Here R is the radius of the coil or solenoid, extend-
ing from z; to z;, D(¢) is the amp-turn density. Here
D(¢) = In(¢), where I is the current strength and n(¢)
is the number of turns per unit length.

If the field distribution H(z) is given on the axis,
then the amp-turn density D(¢) necessary to create
such an axial field may be found by solving the integral
equation (1.3).

Assuming that the function D(z) is determined for
all values of =% <z < + =, the integral equation (1.3)
may be solved by means of a Fourier transform when
we set zy = —= and z, = ©. The solution as found by

V. Glazer has the form [2]
D(z) =
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where Hy(!) (x) is a Hankel function of the first kind and
of the first order, i is the square root of minus one.

The definite integrals in Eq. (1.4) may be evaluated
only in some particular cases. Usually it is very dif-
ficult to evaluate them even numerically. It is most
probably simpler to determine the function D(z) not
from Egq. (1.4) but by integrating an equation (1.3) of
the first sort numerically.

§2, SOLUTION OF THE PROBLEM WHEN THE GIVEN
MAGNETIC LINE OF FORCE IS STRAIGHT

In calculating a magnetic field with rotational sym-
metry let us impose the requirement that a given curve
r = ry(z) (more precisely, surface of rotation) should
coincide with a magnetic line of force. In these cases
the magnetic field components H, and Hy should sat-
isfy the condition

H,(z,7)
1:[z (3, 1)

d.
=@ (2.1)

r=rq(2)

We shall consider the case when the line r = ry(z)
is straight:

ro=kz+a (kz +a>0)- (2.2)

We shall represent condition (2.1) in the form

H.(z, 1) 1y (2) — H, (5, 7) =0 - (2.3)

Setting H, and Hy from Egs. (1.1) and (1.2) into
Eq. (2.3), we obtain an equation for the function H(z):

[rg (z) Hm (z)L- 2{;‘; o Hom ®)]=0- (4

We shall seek a solution of Eq. (2.4) in the form

H(z) =C/ry () (2.5)
where C is an arbitrary constant, and the index m is
as yet undetermined.

It follows from Eqgs. (2.2) and (2.5) that
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H*™ (2) = ( (2.6)
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Setting Eq. (2.6) into Eq. (2.4), we have
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Dividing both sides of Eq. (2.7) by the factor

L
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we obtain the relation
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The left side of Eq. (2.8) is a series in powers of
the parameter k. This series should sum to zerofor any
value of k. This is possible if and only if

2n +m
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It follows from this that the index m = 2,
Consequently in the case of the given line of mag-
netic force of Eq. (2.1), the magnetic field strength on

the axis of symmetry is

C

H@)= mrar

(2.9)

Setting Eq. (2.9) for H(z) in Egs. (1.1) and (1.2) we
obtain
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The absolute value of Hy(z) the magnetic field strength
vector on the line vy =kz + ¢ is

HO(Z) = V1+ 7‘0"2 (Z)Hz(zv 7’0) =
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The arbitrary constant C appears in formulas (2.9)—

(2.12). Any required mean value of the magnetic field
strength at any point, and in particular on the line of
force r = kz + a may be achieved by appropriate choice
of the constant C. Using the criteria for series con-
vergence it is not difficult to establish that the series
(2.10) and (2.11) converge absolutely and uniformly
with respect to r for

__kzta
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It is to be expected that the series (2.10) and (2.11)
with alternating signs converge conditionally inamuch

larger region than in Eqg. (2.13). We note that the
magnetic field as found in Eqgs. (2.10) and (2.11) is not
conical since

H k r
’L:k—[—a/z? (a0, r>a)

and tends to a conical form only for z — =.

If the magnetic field (2.10), (2.11) is produced
by a coil or solenoid of radius R(R > 1y (z)) and ex-
tent 0 =<z = [, then the inverse problem of deter-
mining the required density of amp-turns D(z) reduces
to the solution of the following integral equation, in
accordance with Eq. (1.3)

L
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which may be transformed to the simpler form
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Equation (2.15) is an integral equation of the first
kind with a kernel which is a function of the modulus of
the difference of the arguments, and the finite interval
in the change of variables. The theory developed by
G. A. Grinberg [3] and the Wiener-Hopf method may
be used to solve it. Integral equations ofthe type{2.15}
have been treated in paper [4] for example. Usually
the solution of such equations is in the form of a com-
plicated series of multiple definite integrals and is
generally found numerically.

§3. SOLUTION OF THE PROBLEM IN THE CASE
WHEN THE GIVEN MAGNETIC LINE IS ARBITRARY

Let it be required to create a magnetic field with
rotational symmetry such that an arbitrary line (more
precisely a surface or rotation) r = ry(z) is a mag-
netic line of force.

As regards the function r = ry(z) we shall assume
that it is a single valued function and is positive and
bounded in the interval [0,1].

We shall partition interval 0 = z = [ info N equal
or unequal intervals zj-; = z = z;, where zg =0, zN =
=1, i=1,2,...,N. Let r{ = ro{zj) be a straight seg-
ment in each interval, joining the points {zj~y, rj-y) and
(zi, r{). Consequently the curve r = ry(z) will be ap-
proximated by a broken line of N sections. The results
of the preceding paragraph may be used to calculate
the magnetic field in each interval. Namely we use the
formulas (2.10) and (2.11) for Hy and Hy where for
Zi-1 = Z = zj we must set

ro(2) = kiz + a5, k=, C=C; (i=12...N)
ki: (z)—~r (7‘1—1 ’
z;—2; 4
ai:z O(Zi*.l) 170 (29 (i:1,...,N).=
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In the interval indicated the axial magnetic field,
in accordance with Eq. (2.9), is

c,
H(z) = m = H,(2)

(7,4 <2<3) " (3.1)
The inverse problem of determining the density of
amp-turns D(z) may be approached as follows. We take
the density D(z) to be approximately constant and equal
to Dj in each interval zj-; < z < zj. We then represent
the integral in Eq. (2.14) in the form of a sum of in-

tegrals over the intervals and carry out the integration.

As a result we have

N
D Dy [F;(2) — F31(2)] = Hi(2)

j=1

(2ia<2<z) (3.2)

z ——Zj

1
BO=32yvioTr

(B>ro(z)) - (3.3)
We set z = (zj-1 + 2{)/2 = zj-4/5 in Eqgs. (3.1)—(3.3),
and so obtain a system of N linear algebraic equations

for Dy, .. .,DN:

N
X 15 (i) — Firoa (519)] Di = Hi (21

i=1

(i=1,2,...,N). (3.4)

If the system of Eq. (3.4) is solved ona computer we
obtain the density distribution of amp-turns.

The investigation of this problem was proposed by
the recently deceased Evgraf Sergeevich Kuznetsov.

The authors would like to mention that it was due to
the constant interest of E. S. Kuznetsov and his valu-
able advice that the present paper was completed.
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